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1. Introduction

In the field of structural design, the traditional goals of
engineers were the design of a safe and economical structure.
Nowadays, there is a growing concern for sustainability,
which leads to a change in the accounting of resource
consumption. In this context, the objective of structural design
becomes to optimize the consumption of materials not only
from an economic point of view, but also environmental. It is
worth to note that concrete is the most widely used material on
Earth [1]. Portland cement, the principal hydraulic binder used
in modern concrete, is responsible for large emissions of
carbon dioxide (CO2). Worldwide, the cement industry alone
is estimated to be responsible for about 7% of all CO2

generated [2]. Therefore, it seems vital to include design

criteria to minimize the embedded CO2 emissions in
reinforced concrete (RC) structures. In recent years, there
have been numerous studies to reduce greenhouse gas
emissions resulting from concrete construction. Foremost is
the increasing use of cementitious materials, especially those
that are by-products of industrial processes (such as fly ash,
ground granulated blast furnace slag, and silica fume), that can
serve as partial substitutes for Portland cement [3,4]. Other
studies analyze the substitution of various recycled materials
in aggregate, by using materials like recycled concrete
aggregate, scrap tires and plastics. By this way, they reduce
the need to extract virgin aggregates [5]. Another way of
optimizing the consumption of materials is the use of high
performance materials, which are proposed to reduce cross
sections and the volume of concrete. They are also intended to
increase the durability of concrete structures, to minimize the
maintenance needs of the concrete construction and to limit
the amount of non-renewable special repair materials for
maintaining the concrete.

This study deals with the discrete optimization, in terms of
economic cost and CO2 emissions, of different mix designs of
high-performance concrete (HPC). The mix designs
considered in this study have been taken from different
publications on technology of HPC. These studies are
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dedicated to various properties of fresh mix or hardened
concrete, and unfortunately provide only partial information of
the actual composition of the mix. Furthermore, it is important
to note that in this study each component is described using
only one term: its quantity in the concrete mixture. Each of
these terms represents a variety of information (e.g. cement
can be powdered to various degrees of finenesses and
composed of several different chemical compositions). Taking
into account these limitations, experimental data from 22
different sources have been considered [6-27] and
compressive strength of HPC has been expressed as a function
of six input features: cement (kg/m3), water (kg/m3), coarse
aggregate (kg/m3), fine aggregate (kg/m3), superplasticizer
(kg/m3) and silica fume (kg/m3).

The structural optimization problem can be accomplished
using either exact or heuristic methods. Exact methods are
traditional and well-established approaches, usually based on
the calculation of optimal solutions following iterative
techniques of linear programming [28,29]. The objective
function in exact methods must be differentiable or 
continuous or the reasonable region must be convex. This
requirement indicates that the efficiency of exact methods is
limited to problems with a few design variables. Sarma and
Adeli [30] review the application of non-heuristic structural
concrete cost optimization in different types of concrete
structures.

The second main category of optimization methods is
heuristic methods, whose recent development is linked to the
evolution of artificial intelligence procedures. This category
includes a large number of heuristic search algorithms based on
iterations in which the objective function is evaluated and the
structural constraints are checked. The first studies on heuristic
structural optimization [31,32] were applied to steel structures
to reduce the weight of the structure. Concerning RC structures,
early applications include a pioneering optimization of RC
beams by Coello et al. [33], and the application of genetic
algorithms to prestressed concrete beams by Leite and Topping
[34]. Recently, heuristic methods have been reported on
different types of RC structure optimization: retaining walls
[35,36], frames [37-40], and so on.

The aim of this study is the economic and environmental
optimization of simply supported HPC reinforced beams. The
method followed in this research consisted in the development
of an evaluation computer module where dimensions,
materials and steel reinforcement were taken as variables. This
module computes the economic cost and the CO2 emissions of
a solution and checks all the relevant limit states. The heuristic
model used to optimize the beams is a hybrid multistart
strategy based on a Variable Neighborhood Search (VNS) with
Threshold Accepting (TA). This strategy has already been
broadly and successfully applied in the engineering field,
mainly in location and scheduling problems; however, few
applications have been developed in structural design
optimization [41].

2. Optimization problem definition

The problem of structural concrete optimization proposed in
this study consists of a single-objective optimization of either

the embedded CO2 or the total cost of the structure. Therefore,
it deals with the minimization of one of the two objective
functions: structure cost (F1, defined by Eq. (1)) or CO2

emissions (F2, defined by Eq. (2)); satisfying the constraints of
Eq. (3).

(1)

(2)

(3)

In the expressions above, note that x1, x2, ..., xn are the design
variables of the problem. The objective functions considered
in Eq. (1) and Eq. (2) are defined as the sum of the unit costs
–prices (pi) for economical optimization or CO2 unit emissions
(ei) for the embedded CO2 optimization– multiplied by the
measurements of construction units (mi) such as concrete,
steel, formwork, etc. Unit prices and CO2 unit emissions
considered for the problem optimization are given in Table 1
and are obtained from the BEDEC PR/PCT ITEC materials
database of the Catalonia Institute of Construction Technology
[42] in November 2011.

Constraints in Eq. (3) include the serviceability and ultimate
limit states (SLSs and ULSs) as well as the geometric and
constructability constraints of the problem. In this study, only
feasible solutions have been considered and therefore, penalty
functions have not been applied. Given the variables of the
present problem, the measurement and cost evaluation of a
particular solution is straightforward.

2.1. Variables

A total of 14 variables define a solution for the simply
supported HSC beam (Fig. 1 and Fig. 2). These variables
define the geometry, the type of steel grade, the passive
reinforcement of the beam and the HPC mix design. The first
two variables are geometric and they correspond to the height
(h) and the width (b) of the cross section. The next 10 variables
correspond to the definition of a passive reinforcement setup.
Each reinforcement setting is defined by two variables:
number of bars (n) and diameter (Ø). The longitudinal upper
reinforcement is displayed throughout the beam length (n1,
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Table 1 Basic prices and CO2 emission considered in the analysis
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Ø1). Flexural bars include two reinforcement systems: a
continuous lower reinforcement which covers all the beam
length (n2, Ø2); and a central reinforcement displayed in the
central part of the beam (n3, Ø3). Four variables define the
design of the shear reinforcement: the central reinforcement (n5,
Ø5); and the reinforcement to be displayed in a length of L/3
near the supports (n4, Ø4). The next variable relate to the steel
grade (fyk), which can vary between B-400-S and B-500-S.
The last variable is the HPC mix design. A set of 120 mix
designs is considered in this study, considering 20 possible
HPC mix design for each concrete grade value (55, 60, 70, 80,
90 and 100 MPa). Each mix design option is a set of seven
values: the concrete grade and the amount of cement, water,
superplasticizer, coarse aggregate, fine aggregate and silica
fume for each m3 of HPC.

The set of combinations of values of the 14 variables may be
defined as the solution space. This space is practically
unlimited due to what is known as combinatorial explosion.
Each vector comprised of 14 variables defines a solution
having an economic cost following Eq. (1) and a CO2 emission
following Eq. (2). Solutions that satisfy the constraints of Eq.
(3) will be feasible solutions. Those that do not satisfy all
constraints will be unfeasible solutions.

2.2. Parameters

The parameters are all those magnitudes taken as data and
therefore, remain constant in the optimization process. They
are divided into geometric, loading, cost and durability data.
Table 2 shows the parameter values considered in the
optimization research.

2.3. Structural constraints

Once the 14 variables defining a beam solution are chosen,
then geometry, materials and passive reinforcement are fully
defined. Considering these 14 variables that define a particular
solution, the structural evaluation module verifies the
feasibility of the beam solution. This module calculates the
stress envelopes of the structure and checks all the restrictions
considered in Eq. (3) that the structure must satisfy: all the
serviceability and ultimate limit states (SLS and ULS), as well
as the geometric and constructability constraints. The critical
sections of the simply supported beam are verified in
accordance with the requirements of the Spanish Standard
EHE-08 [43]. The verifications considered in the ULS include
service and ultimate flexure and ultimate shear. Moreover,
both flexural and shear minimum amounts of reinforcement as
well as the geometrical minimum, are also taken into account.
The SLS verifications check that the cracking width does not
exceed the limitation for the existing durability conditions. 

3. Variable neighborhood search 

The heuristic method used in this work is an optimization
strategic method based on a variable neighborhood search
strategy (VNS). The VNS strategy was originally proposed by
Mladenovic and Hansen [44]. The VNS method is based on
three observations: (i) a local optimum with respect to one
neighborhood structure is not necessarily a local optimum for
another neighborhood structure; (ii) a global optimum is a
local optimum with respect to all possible neighborhood
structures; and (iii) for many problems local minima with
respect to one or several neighborhoods are relatively close to
each other. Unlike many other metaheuristics, the basic
schemes of VNS are simple and require few decisions: the
number and types of neighborhoods; the order of their use in
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Fig. 1 Design variables of the simply supported HPC beam: cross section

Fig. 2 Design variables of the simply supported HPC beam: longitudinal view
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Table 2 Parameters considered in optimization
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the search, the strategy for changing the neighborhoods, the
local search methods and the stop criterion [44]. Let us denote
with Nk, (k=1,…, kmax), a finite set of pre-selected
neighborhood structures, and with Nk(x) the set of solutions in
the kth neighborhood of x. The search of solutions in the
neighborhoods can be done in three different ways:
deterministic, stochastic and both deterministic and stochastic.

3.1. Reduced variable neighborhood search

The reduced variable neighborhood search (RVNS
henceforth) method uses a stochastic way in the change of
neighborhoods. In RVNS, solutions from the pre-selected
neighborhoods Nk(x) are chosen at random, without being
followed by descend. Rather, the values of these points are
compared with that of the incumbent as updating takes place
in case of necessary improvement. RVNS is useful in very
large instances, for which local search is costly. The steps of
this method are:

Initialization. Select the set of neighborhood structures Nk,
k=1,…, kmax, that will be used in the search; find an initial
solution x.

Repeat the following until the stopping condition is met:
Set k ← 1
Until k = kmax, repeat the following steps:
Shaking. Generate a point x’ at random from the kth

neighborhood of x (x’ ϵ Nk(x));
Move or not. If the solution thus obtained x’ is better than x,

set x←x’; otherwise, set k←k + 1.

3.2. Variable neighborhood descent

The Variable Neighborhood Descent (VND henceforth)
method is obtained if the change of neighborhoods is
performed in a deterministic way. Steps of the VND are:

Initialization. Select the set of neighborhood structures 
Nk, k=1,…,kmax, that will be used in the search; find an initial
solution x.

Repeat the following until no improvement is obtained.
Set k ← 1
Until k = kmax, repeat the following steps:
Exploration of the neighborhood. Find the best neighbor x’ of x.
Move or not. If the solution thus obtained x’ is better than x,

set x←x’; otherwise, set k←k + 1.

3.3. Basic variable neighborhood search (BVNS)

The Basic VNS (BNVS) method combines deterministic and
stochastic changes of the neighborhood. Steps of the BNVS
are:

Initialization. Select the set of neighborhood structures Nk,
k=1,…,kmax, that will be used in the search; find an initial
solution x; choose the stopping criterion.

Repeat the following until the stopping condition is met:
Set k ← 1
Until k = kmax, repeat the following steps:
Shaking. Generate a point x’ at random from the kth

neighborhood of x (x’ ϵ Nk(x));
Local search. Apply any local search method with x’ as initial

solution; denote with x’’ the so obtained local optimum;
Move or not. If this local optimum is better than the

incumbent, move there (x←x’’), and continue the search with
N1(k ← 1); otherwise, set k ← k + 1.

3.4. Threshold Accepting (TA)

In this study, the local search used in the VNS methods is the
Threshold Accepting method (TA henceforth), which was
originally proposed by Dueck and Scheuer [45]. The VNS-TA
strategy combines the diversification approach of exploring
distant neighborhoods (VNS) with the intensification given in
the improvement phase (TA). The VND and BVNS method
for the local search used was the TA and will be called,
henceforth, VND-TA and BVNS-TA. The TA algorithm starts
with an initial randomly generated working solution, x, and an
initial high threshold value for accepting solutions. TA
changes the solution by a move. The new current solution, x’,
is accepted if it improves the value of the objective function
or when the value increment (cost or CO2 emission,
depending on the objective function that is being optimized)
is smaller than the current threshold value. Again, the current
solution is checked against structural constraints and if it is
feasible, it is adopted as the new working solution x. The stop
criterion considered in this algorithm has been set as the total
amount of iterations and the initial threshold has been
adjusted following the method proposed by Medina [46]. In
this problem, the TA strategy was calibrated with chains of
12,000 iterations for cost optimization and 24,000 iterations
for CO2 emissions. An initial threshold of 80 € in cost
optimization and 160 kg CO2 in environmental optimization
are considered.

4. Results of the heuristics

The three optimization methodologies used in this study
(VND-TA, RVNS and BVNS-TA) were applied to the 
simply supported HPC beam described above with the span
length varying between 10 and 20 m in steps of 1 m. The 
pre-selected neighborhood structure considered to be 
Nk, k = 1,8,2,9,3,10,4,11,5,12,6,13,7,14. This sequence of
neighborhood structure allows exploration with alternating
changes in many variables (extending the search space of
solutions) with minor modifications. It is worth noting that,
since the optimization methods need an initial solution
(randomly generated), every test is repeated 1,000 times to
study the influence of the initial solution on the results. The
optimization problem was coded in Fortran 95 with a
Silverfrost Plato 4.3.0 compiler. The running time of one
execution of the 1,000 iterations of each algorithm was, on
average, 20 minutes, on a PC AMD Phenom II X6 1055T
Processor 2.80 GHz.

4.1. Statistical description results

This section describes the statistical properties of the
sample of solutions obtained with 1,000 runs of the
algorithms (RVNS, VND-TA and BVNS-TA) with cost 
and CO2 emissions optimization. Table 3 and Table 4 
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show the mean and minimum cost and CO2 emissions
results for cost optimization and emissions optimization,
respectively.

It can be seen that results of RVNS method have an average
standard deviation with regard to the mean value of 25% in the
cost optimization and of 29% in CO2 emissions optimization.
It may be concluded that this method is very sensitive to the

selection of the initial solution. It can also be seen that VND-
TA results have a deviation with regard to the mean value of
11% in cost optimization and 14% in CO2 emissions
optimization. This method is less sensitive to the selection of
the initial solution than the RVNS. Regarding BVNS-TA
method, the results have even a lower deviation with respect to
the mean of 6% in cost optimization and of 12% in CO2
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    L (m) 
    10 11 12 13 14 15 16 17 18 19 20 

R
V

N
S 

Mean 5,570 6,274 7,011 7,797 8,809 9,776 10,740 10,740 12,854 14,171 15,456 
σ 1,910 1,991 2,154 2,318 2,588 2,806 3,051 3,051 3,478 3,743 3,903 

Min 2,219 2,730 2,614 3,443 3,318 4,592 5,040 5,040 5,141 6,465 7,109 
Max 13,140 14,241 16,428 18,474 18,771 21,339 22,528 22,528 27,716 30,606 29,530 
C.I* ±118.4 ±123.4 ±133.5 ±143.7 ±160.4 ±173.9 ±189.1 ±189.1 ±215.5 ±232.0 ±241.9 

Skewness  10.4 9.6 9.7 9.2 9.2 11.3 11.5 11.5 9.6 9.9 8.8 
Kurtosis 2.7 1.7 3.2 3.0 2.7 6.7 7.2 7.2 3.5 4.0 1.4 

V
N

D
-T

A
 

Mean 2,037 2,382 2,683 3,196 3,755 4,254 4,866 5,506 6,258 6,837 7,623 
σ 320 325 352 417 495 531 624 727 905 971 1,115 

Min 1,344 1,594 1,930 2,239 2,606 3,003 3,436 3,788 4,297 4,914 5,488 
Max 3,696 3,737 3,918 4,606 6,194 6,785 8,138 8,977 9,908 10,601 12,073 
C.I* ±19.9 ±20.1 ±21.8 ±25.9 ±30.7 ±32.9 ±38.7 ±45.1 ±56.1 ±60.2 ±69.1 

Skewness  10.1 7.6 3.8 2.7 8.9 8.4 11.8 10.0 12.1 11.4 11.6 
Kurtosis 9.8 6.2 -3.4 -1.1 10.5 9.2 13.7 9.2 7.5 5.4 5.2 

B
V

N
S-

T
A

 

Mean 1,858 2,195 2,611 3,048 3,530 4,071 4,595 5,238 5,865 6,568 7,342 
σ 244 286 328 378 419 509 557 681 756 810 927 

Min 1,344 1,598 1,920 2,239 2,573 2,955 3,379 3,798 4,263 4,786 5,341 
Max 2,461 2,997 3,822 4,215 4,805 5,758 6,175 6,966 8,326 9,565 11,235 
C.I* ±15.1 ±17.7 ±20.4 ±23.5 ±26.0 ±31.6 ±34.5 ±42.2 ±46.8 ±50.2 ±57.5 

Skewness  3.7 5.3 4.5 5.4 4.7 6.8 5.2 5.7 6.7 9.1 8.3 
Kurtosis -5.2 -4.5 -3.2 -2.8 -2.5 -3.0 -3.9 -3.3 -1.8 2.4 2.4 
(*) Confidence Interval for a 0.05 level of significance 

Table 4 Statistical description of 1,000 results with RVNS, VND-TA and BVNS-TA methods. CO2 emissions optimization

    L (m) 
    10 11 12 13 14 15 16 17 18 19 20 

R
V

N
S 

Mean 2,332 2,681 3,004 3,379 3,790 4,252 4,681 5,210 5,759 6,365 6,903 
σ 683 732 784 880 960 1,038 1,142 1,241 1,366 1,455 1,520 

Min 1,151 1,309 1,492 1,694 1,933 2,308 2,494 2,746 2,942 3,479 4,032 
Max 5,849 5,560 5,945 7,485 7,646 8,644 10,729 10,823 12,039 13,283 13,005 
C.I* ±42,34 ±45,4 ±48,61 ±54,53 ±59,48 ±64,32 ±70,77 ±76,94 ±84,67 ±90,17 ±94,22 

Skewness  10.8 9.3 8.2 9.6 9.9 10.2 14.0 13.0 11.9 11.3 9.6 
Kurtosis 5.0 2.7 0.7 4.0 3.9 4.5 12.6 9.8 8.0 8.1 3.0 

V
N

D
-T

A
 

Mean 1,065 1,220 1,373 1,588 1,860 2,099 2,387 2,641 2,948 3,275 3,660 
σ 129 166 120 109 165 180 274 298 340 401 462 

Min 833 1,001 1,152 1,332 1,539 1,761 2,004 2,228 2,501 2,753 3,045 
Max 1,481 1,815 2,194 1,975 2,393 2,820 3,524 4,088 4,767 5,075 5,613 
C.I* ±7,97 ±10,27 ±7,43 ±6,76 ±10,2 ±11,16 ±17 ±18,46 ±21,1 ±24,84 ±28,66 

Skewness  5.5 15.0 19.4 5.1 8.7 12.3 16.5 19.8 23.5 19.4 15.8 
Kurtosis -2.1 5.3 31.0 -1.8 0.3 7.4 10.8 18.4 28.0 15.0 8.4 

B
V

N
S-

T
A

 

Mean 927 1,100 1,282 1,484 1,713 1,965 2,215 2,512 2,822 3,109 3,433 
σ 51 62 69 82 100 114 117 141 163 179 216 

Min 833 978 1,151 1,332 1,539 1,761 2,000 2,233 2,499 2,754 3,060 
Max 1,103 1,312 1,550 1,973 2,203 2,403 2,653 3,131 3,543 4,089 4,625 
C.I* ±3,14 ±3,82 ±4,31 ±5,05 ±6,18 ±7,06 ±7,22 ±8,72 ±10,1 ±11,07 ±13,39 

Skewness  5.8 7.0 8.5 11.4 8.6 5.6 8.7 10.9 11.1 16.3 15.7 
Kurtosis -1.4 -0.5 3.6 11.5 3.5 -2.0 0.3 6.3 7.0 19.2 18.3 

(*) Confidence Interval for a 0.05 level of significance 
 

Table 3 Statistical description of 1,000 results with RVNS, VND-TA and BVNS-TA methods. Cost optimization
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emissions optimization. The main characteristics of the
optimal solution obtained with the different algorithms for a
span length of 15 m are given in Table 5.

In order to evaluate the viability of using HPC 
instead of conventional concrete, the authors carried out a
process of economic optimization of a beam of the same
features as those outlined in paragraph 2, but using
conventional reinforced concrete (fck between 25 and 50 MPa)
instead of HPC. This comparison reveals that the use 
of HPC decreases by more than 15% the cost of the most
economical beam. Thus, the increased cost resulting from the
use of HPC is offset by its better mechanical performance,
proving to be a more efficient material than conventional
concrete.

4.2. Adequacy of the heuristics

The adequacy of the three methods is evaluated on the
basis of their adjustment to a three-parameter 
Weibull distribution [47]. This type of fitting has 
already been applied to cost estimation of concrete
structures [48]. It is based on the fact that the results of each
computer run of the three heuristics applied in this study
(RVNS, VND-TA and BVNS-TA) are extreme values in
terms of cost and CO2 obtained after a large number of
solutions. It is important to note that even if the beam
analyzed in this study has a high but a finite number of
possible solutions, we suppose that the population space
approximates a continuous space because the number of
variables is large and is represented in an almost continuous
manner.

Some preliminary tests have been applied to the set of data
before the fitting to a three-parameter Weibull distribution.
Firstly, Table 6 and Table 7 show that the samples have a
positive asymmetric distribution and, in most of the cases,
they present a leptokurtic distribution. Secondly, by

computing the Kolmogorov-Smirnov and Chi-squared [49]
statistics with a 0.05 level of significance, it has been verified
that there is no reason to reject the Weibull hypothesis. Each
set of 1,000 optimal solutions (in terms of cost and CO2

emissions) found through the three different methods (RVNS,
VND-TA and BNVS-TA) has been compared with a three-
parameter Weibull distribution. Thirdly, the independence of
each set of solutions has been tested by running a Wald-
Wolfowitz test. Taking this consideration into account, 
Tables 6 and 7 show the three-parameter Weibull distribution
results, where γ is the location parameter, η is the scale
parameter, β is the shape parameter and ρ is the correlation
coefficient.

In view of the results, we can conclude that in all cases, the
set of solutions fit well using a three-Weibull parameter
distribution, as the minimum correlation coefficient 
obtained is 0.977. The fit to the Weibull distribution gives us,
for each optimization problem, the theoretical minimum
value to which the method converges. This value is called
location parameter (γ). For this reason, it has been considered
that a method is more efficient than another if its fit to a
Weibull distribution has a lower value of the location
parameter. In view of the results (Table 6 and Table 7), we
can note that, if the overall optimization process is
considered (cost and CO2 emissions optimization), VND-TA
method provides better solutions in 15 of the 22 optimization
processes.

5. Parametric study

This section describes the parametric study of practical
simply supported beams in HPC concrete. The parameter
considered is the span length of the beam (L, see Fig. 2). The
considered values of L amount to a total of eleven lengths
varying from 10 to 20 m in steps of 1 m. Eleven beam types
were investigated, adding a total of 11,000 computer runs:

C. Torres-Machi, V. Yepes, J. Alcalá, E. Pellicer 95

Table 5 Main characteristics of the optimal HPC beams with span length 15 m

 RVNS VND-TA BVNS-TA 
Objective Cost CO2 Cost CO2 Cost CO2 
Height (m) 0.75 0.90 0.75 0.95 0.75 0.85 
Width (m) 0.30 0.30 0.30 0.30 0.30 0.30 
As1 3Ø12 3Ø10 7Ø 6 11 Ø 6 7Ø 6 9Ø6 
As2 10Ø25 8Ø25 9Ø25 7 Ø 25 9Ø25 12Ø20 
As3 9Ø20 9Ø 6 11Ø10 6 Ø 12 11Ø10 4Ø16 
As4 5Ø10 4Ø 8 4Ø 6 4Ø6 4Ø6 4Ø6 
As5 6Ø25 9Ø 6 4Ø 6 4Ø6 4Ø6 4Ø6 
Mix design 79 105 49 48 48 49 
fck (MPa) 55 70 80 90 90 90 
fyk (MPa) 400 400 500 500 500 500 
where: 
As1: Upper reinforcement 
As2: Lower continuous reinforcement 
As3: Lower central reinforcement 
As4: Shear reinforcement in the L/3 length near the supports (stirrups per meter) 
As5: Shear reinforcement in the L/3 central length of the beam (stirrups per meter) 
�
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each computer test is performed 1,000 times in order to obtain
statistics of the results. As provided in Section 4.2, the VND-
TA method is the most efficient algorithm and thus is used in
the parametric study.

Fig. 3 and Fig. 4 show the minimum cost and CO2 variation of
the 11 HPC reinforced beams investigated. The results obtained
have a good parabolic variation in terms of the span length: Cost
(€) = 7.22*L2 + 5.10*L + 59.68 with a regression coefficient of
R2 = 0.9998 and CO2 (kg) = 17.15*L2 - 105.24*L + 696.71 with
a regression coefficient of R2 = 0.9992.

It is also necessary to determine whether the characteristics

of the cost-optimized beams and the emission-optimized
beams are similar. Thus, Table 8 shows the characteristics of
emission-optimized beams and the ratio of the characteristics
between CO2 and cost-optimized beams. In all cases and in
both optimization processes, optimized beams have the
minimum width, which had been set at 0.30 m for
constructability constraints. In addition, there is a trend in the
use of concretes of high strength (between 70 and 90 MPa).
However, the concrete with the greatest compressive strength
available in the optimization process (100 MPa) is not
considered in any of the optimal solutions and therefore, it can
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L (m) 

 10 11 12 13 14 15 16 17 18 19 20 

R
V

N
S 

Min 1,151 1,309 1,492 1,694 1,933 2,308 2,494 2,746 2,942 3,479 4,032 

γ 1,132 1,293 1,484 1,662 1,924 2,295 2,467 2,701 2,923 3,419 4,002 

β 1.838 1.999 2.032 2.096 2.076 1.999 2.203 2.303 2.340 2.257 2.042 

η 1,352 1,568 1,720 1,938 2,111 2,295 2,493 2,825 3,201 3,317 3,273 

ρ 0.998 0.997 0.995 0.998 0.993 0.995 0.992 0.993 0.987 0.997 0.997 

V
N

D
-T

A
 

Min 833 1,001 1,152 1,332 1,539 1,761 2,004 2,228 2,501 2,753 3,045 

γ 799 991 1,130 1,309 1,507 1,718 1,994 2,199 2,461 2,735 3,025 

β 2.153 1.434 2.424 2.772 2.292 2.373 1.516 1.712 1.724 1.540 1.373 

η 300.9 253.1 273.0 314.0 400.5 429.7 437.3 492.5 539.6 592.9 705.3 

ρ 0.992 0.983 0.982 0.984 0.985 0.987 0.989 0.982 0.977 0.988 0.984 

B
V

N
S-

T
A

 Min 833 978 1,151 1,332 1,539 1,761 2,000 2,233 2,499 2,754 3,060 

γ 826 969 1,135 1,319 1,515 1,745 1,990 2,221 2,484 2,737 3,039 

β 2.066 2.315 2.310 2.211 2.143 1.983 2.028 2.302 2.298 2.473 2.111 

η 114.8 148.0 166.4 185.5 224.1 249.1 255.3 328.0 380.8 418.3 442.5 

ρ 0.986 0.993 0.993 0.992 0.985 0.985 0.986 0.991 0.990 0.987 0.984 

Where: 
γ: Location parameter of the Weibull distribution 
β: Shape parameter of the Weibull distribution 
η: Scale parameter of the Weibull distribution 
ρ: Correlation coefficient to Weibull distribution 

 

Table 6 Parameters of the Weibull distribution of the optimal HPC beams. Cost optimization

L (m) 
 10 11 12 13 14 15 16 17 18 19 20 

R
V

N
S 

Min 2,219 2,730 2,614 3,443 3,318 4,592 5,040 5,040 5,141 6,465 7,109 
γ 2,162 2,679 2,597 3,341 3,254 4,430 4,911 4,599 5,061 6,410 7,048 
β 1.887 1.893 2.244 2.035 2.392 2.078 2.087 2.534 2.531 2.295 2.399 
η 3,843 4,056 4,995 5,033 6,262 6,024 6,569 8,107 8,780 8,760 9,486 
ρ 0.997 0.997 0.984 0.999 0.992 0.999 0.998 0.985 0.987 0.990 0.986 

V
N

D
-T

A
 Min 1,344 1,594 1,930 2,239 2,606 3,003 3,436 3,788 4,297 4,914 5,488 

γ 1,270 1,521 1,863 2,048 2,427 2,878 3,309 3,732 4,264 4,825 5,443 
β 2.678 2.984 2.452 3.010 3.061 2.919 2.875 2.791 2.572 2.349 2.159 
η 864 965 928 1,285 1,484 1,543 1,745 1,990 2,241 2,264 2,462 
ρ 0.991 0.993 0.987 0.996 0.995 0.996 0.993 0.993 0.985 0.994 0.988 

B
V

N
S-

T
A

 Min 1,344 1,598 1,920 2,239 2,573 2,955 3,379 3,798 4,263 4,786 5,341 
γ 1,283 1,532 1,824 2,137 2,487 2,935 3,313 3,684 4,134 4,700 5,231 
β 2.501 2.502 2.556 2.590 2.655 2.380 2.461 2.430 2.490 2.480 2.448 
η 649 749 1,824 1,028 1,178 1,289 1,450 1,759 1,954 2,167 2,390 
ρ 0.987 0.982 0.987 0.986 0.988 0.980 0.987 0.986 0.987 0.980 0.988 

Where: 
γ: Location parameter of the Weibull distribution 
β: Shape parameter of the Weibull distribution 
η: Scale parameter of the Weibull distribution 
ρ: Correlation coefficient to Weibull distribution 

 

Table 7 Parameters of the Weibull distribution of the optimal HPC beams. CO2 emissions optimization
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be concluded that its greatest strength is not worth in terms of
cost and CO2 emissions.

The steel grade used in optimal beams is, in all cases, the
greatest yield strength (500 MPa). Therefore, the greater

mechanical resistance in steel has similar costs and CO2

emissions. Even if the steel grade of both optimal processes is
the same, the total steel consumption of optimal beams
changes depending on the objective function.

Fig. 5 and Fig. 6 show the relationship between the steel
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Fig. 3 Variation of minimum cost for the 11 beams with VND-TA
method

Fig. 4 Variation of minimum CO2 emission for the beams with
VND-TA method

  L (m) 
   10 11 12 13 14 15 16 17 18 19 20 

Height (m) 
a 0.65 0.65 0.80 0.90 0.95 0.95 1.10 1.10 1.10 1.30 1.50 
b 1.18 1.08 1.33 1.50 1.46 1.27 1.29 1.29 1.22 1.44 1.50 

Width (m) 
a 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 
b 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

As1 (kg) 
a 14.55 15.88 22.95 27.81 29.81 38.88 41.73 39.78 42.00 53.07 74.30 
b 1.20 1.00 1.33 1.50 1.50 1.57 1.39 1.00 1.13 1.13 1.60 

As2 (kg) 
a 194.7 250.6 271.1 291.6 362.2 449.5 476.5 544.8 682.0 654.3 686.4 
b 0.85 0.86 0.75 0.63 0.67 0.78 0.78 0.76 0.82 0.68 0.69 

As3 (kg) 
a 8.0 12.8 11.0 16.2 17.3 23.2 21.3 29.3 30.8 38.0 33.9 
b 0.72 1.00 0.57 0.58 0.51 0.80 0.70 0.68 0.74 0.67 0.57 

As4 (kg) 
a 62.9 67.1 83.9 98.6 107.8 115.9 137.8 143.8 152.8 183.4 212.6 
b 1.11 1.05 1.20 1.30 1.29 1.17 1.20 1.20 1.15 1.31 1.36 

As5 (kg) 
a 62.9 67.1 83.9 98.6 107.8 115.9 137.8 179.8 152.8 227.5 212.6 
b 1.11 1.05 1.20 1.30 1.29 1.17 1.20 1.50 1.15 1.62 1.36 

fck (MPa) 
a 90 90 90 90 90 90 80 90 90 90 70 
b 1.00 1.00 1.00 1.00 1.00 1.00 0.89 1.00 1.00 1.00 0.78 

fyk (MPa) 
a 500 500 500 500 500 500 500 500 500 500 500 
b 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

(a) CO2 emission-optimized beams characteristics 

(b) Ratio between CO2 and cost-optimized beams characteristics 

As1: Upper reinforcement 

As2: Lower continuous reinforcement 

As3: Lower central reinforcement 

As4: Shear reinforcement in the L/3 length near the supports 

As5: Shear reinforcement in the L/3 central length of the beam 
 

Table 8 CO2 emissions and cost-optimized beams characteristics

Fig. 6 Weight of shear and total steel ratio (CO2/cost)
 

Fig. 5 Weight of longitudinal and total steel ratio (CO2/cost)
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weight ratio between the ecological beams and the economic
ones. In view of the results, it can be noted that, generally,
ecological beams present a higher amount of steel in the upper
and shear reinforcement. Nevertheless, regarding the total
weight of steel consumption, economic beams require on
average a 12% less of steel.

Regarding concrete consumption ratio in Fig. 7, the CO2

emission-optimized beams needed, on average, 33% more
concrete than cost-optimized ones. Table 9 shows the mix
design obtained in both optimization processes. It is important
to note that in 90% of the cases, the mix design of the optimal
beams in terms of cost and CO2 emissions is the same. This
mix design is characterized by a low relation water/cement of
0.26, no silica fume addition and approximately 5 kg/m3 of
superplasticizer.

6. Conclusions

In the light of the results obtained in this study, the following
conclusions may be derived:

- The proposed VND-TA algorithm is an efficient procedure
for the optimum design in terms of cost and CO2 emissions of
HPC beams. BVNS-TA method provides less effective

solutions and the RVNS method is very sensitive to the
selection of the initial solution and therefore, it is less suitable
for this heuristic optimization.

- The use of HPC concrete in the optimization process has led
to a reduction of more than 15% of the cost of the beams. This
represents an important economic saving from the use of more
efficient materials, and therefore, HPC can be considered a
more sustainable material than the conventional concrete.

- The set of optimal solutions found using the different
optimization methods (RVNS, VND-TA and BVNS-TA) for
the cost and CO2 emission optimization are samples of
independent values that the three-parameter Weibull
distribution fits well.

- From the parametric analysis, it can be concluded that
economic and ecological beams show a good parabolic
correlation with the span length.

- The optimized beams always use steel with the greatest
yield strength (500 MPa) and high levels of concrete grades
(80 or 90 MPa).

- Optimal beams in terms of cost and CO2 emissions have a
mix design with low relation water/cement, no silica fume and
an addition of superplastizicer lower than the average value
used in HPC mix design (4.8 kg/m3 instead of 10.5 kg/m3).

Acknowledgments: This study was funded by the Spanish
Ministry of Science and Innovation (research project
BIA2011-23602).
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